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TRANSONIC FLOW OF AN ELASTIC MEDIUM PAST A THIN SOLID* 

1-V. SIMONOV 

A plane problem of the steady state of a body in an infinite elastic medium 
in the range of sonic velocities is considered. The generalized Hilbert 
problem arises for the complex function determining the longitudinal part of 
the velocity and stress field , and the transverse part of the field is 
expressed simply by the solution of the Hilbert problem. The separation of 

the mediumfromthe body contour at the trailing edge is computed. In the 

former case the position of the separation point is not known, and the method 
of fixing this point differs from that in /l/ where the problem of wedging 
is considered at sub-Rayleigh velocities. In /l/ the free surface is formed 
before the frontal part of the wedge and the separation point is found from 
the condition that the stresses are finite. In the present problem, just as 
in the case of super-Rayleigh subsonic motion of a wedge /2, 3/, the condition 
that the stresses are finite (and even continuous) at the separation point 
is ensured by the solution beforehand, and a more accurate analysis is 

required, which will include, to clarify the problem, the computation of the 
first few terms of the asymptotic expansion of the solution near the separation 
point. The separation point is fixed using the condition of attachment of 
the flow in the zone of contact, and the condition of impermeability of the 
region between the separation point and the trailing edge of the body. The 

demand that both these physical conditions are met locally near the point Of 

*Prikl.Matem.Mekhan.,48,1,114-122, 1984 
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detachment, leads to an equation for determining the size of the region of contact. Satisfy- 
ing this equation is equivalent to the condition that the curvature of the cavity surface is 
bounded at the point of contact, the condition known in hydrodynamics as the Brillouin-Villat 
condition /4/. Certain generalizations of this condition and of the problem as a whole (taking 
into account the friction, three-dimensionality and non-stationarity) are discussed. The 
supersonic wedging was studied in /5, 6/. 

1. Formulation of the problem. A thin, plane, perfectly rigid symmetric body of 
width L (a blade) is placed without friction in an infinite flow of an elastic medium. At 

infinity, ahead of the frontal part of the blade (X--+-W, iUl<~) (see the figure) the elastic 
medium is load-free, and the stream velocity parallel to the axis of the body is equal to c 
and takes values in the interval ce < c < Cl (c1 and Ca denote- the longitudinal and transverse 
wave velocities of the medium). The problem consists of constructing a steady velocity and 
stress field in an elastic medium within the framework of the following scheme of flow. The 
blade is in complete contact with the medium near the sharp leading edge on the segment A03 

(O<x-cZ), the surface of the elastic medium behind the points A and B is stress-free, and 
a cavity is formed (see fig.). In a special case t = L. The scheme, analogous in many 
aspects to the scheme of flows in the subsonic, super-Rayleigh rangeof velocities /2, 3/, is 
substantiated below. 

The symmetry principle enables us to formulate the 

Y problem in theupper half-plane y> 0 only. The boundary 
conditions transferred to the boundary y= 0, take the form 

Y=O(-M<Z~o),U=f(5)(O~c~E) (1.1) 

uy=0(1<2<00),z,,=0(-~<(2<00) 

0 The following notation is adopted: u,, uv,rz,, are the 
stress tensor components, and (u, v) and (U, Vi are the pert- 
urbed displacement and velocity vectors respectively of the 
points of the elastic medium. The following constraints are 
imposed on the function f(t) representing the profile of the 
streamlined body (a prime denotes ordinary differentiation): 

(1.2) 

In addition to (1.11, the following extra conditions will be taken into account in the 
course of the solution: 

1) the flow is attached to the segment.OA: the stress a, must not be tensile 

(I# (2, 0) g 0 (OK rc f) (1.3) 

2) the cavity edge does not intersect the body contour behind the separation point A 

v (4 2 f (4 (1 f = < L) (1.4) 

3) the energy density is integrable within any finite volume of the elastic medium; 
4) the condition of radiation (this will become clear in the course of the solution). . 
In the plane steady-state problem of the theory of elasticity all functions can be expres- 

sed in terms of the displacement potentials 9 and 9 by means of the formulas 

u = cP,r + &ll r = rp,, - 9,. (1.5) 

u = % = ~.ur +9'av, v = V& = 'psr -&xx 

0, = acp*, +tpsvl or = --Bq,, --3?rr~ rxu = 9.xu-P9G 
@=1 - c*/(Zc,*) < 'iz, a = 2 - @ - e*ic,' 

where the stresses are normalized to 2p (p is the shear modulus), and the velocities.to c. 
The problem of determining cp and Ip is formulated as follows. In the region (--<(I< 

bo, O<g< m) the functions must satisfy the elliptic and wave equations 

t%%?rc+rp,,=o* Bpalp,xc-*.w=o (1.6) 

(fij'=Il-+l9 l_l?2) 

Aty=O they must satisfy the boundary conditions following from (1.11, (1.2) 

PP., + *,su =o @>I)* (P.ry-f%rr=O (IsI<-) (1.7) 

(PsY-tp.zx= f' (2) (0 Q 2 < 0, q&l - ip,zX = 0 (s< 0) 

The general solution of the first equation of (1.6) is a harmonic functionofthe stretched 
coordinates z, fi,g, while that of the second equation is D'Alembert's solution. For this 
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reason it is best to replace 'p and"+ by new unknown functions Q and \I 

CD (2) = 'p,=* - i@,-'cp,,,, Y (z,), =Y," (z,), Yl (G) = $ (5, Y) (1.8) 

Here 6,(z) is an analytic function of the complex variable 3 = z f ip,Y (the second deriv- 
ative in z of the complex displacement potential), Yi (z1) is a piecewise-smooth D'Alembert's 
solution chosen taking the radiation condition into account, and there are no transverse waves 
arriving from infinity, so that Zr = z- B*Y. Conversely, the second derivatives of cf and 11 
are connected with the new functions by the following relations: 

'p *II = Re Q, m.xV = -pi Im Q, $.zX = Y, +.+y = -LY 11.9) 

Here (1.6) will be satisfied and by substituting (1.9) into (1.5) we can express uniquely 
the stresses and velocities in terms of 0 and Y, bypassing the intermediate differentiation 
or integration. 

Let us now formulate the boundary conditions for 0 and Y at Y = 0. We obtain them by 
substituting (1.9) into (1.7) and eliminating Y 

Re [(pa - it3rflp) 01 = 0, Y = -fi-'fli Im 0 (I< z< m) (1.10) 

Im @ = Af’ (x), Y = -(I + pIA) f’ (cc) (0 < x < I) 

Im@ = 0, Y = 0 (5 < 0), A = fl [PI (1 - p)l-' 

The boundary conditions have become separated. For the analytic function @ (2) we now have 
the generalized Hilbert problem /7, 8/. After solving this problem we can easily recover the 
function Y in terms of Im6, on the real axis, from the conditions (l.lO), by replacing 
x by zr. 

2. Solution of the Hilbert problem. We will seek a solution in the class of func- 
tions satisfying the following constraints on their behaviour at the singularities: 

I@l<+$ (Z-+O,M)* pq<* (z-+l+i.O) (2.1) 

which follow from the supplementary conditions (3), (4). The condition at infinity follows 
from the requirement that the energy flux at infinity must be finite, taking the results of /9/ 
into account. The solution in 'the class of functions shown is unique, and can be found using 
one of the methods given in /7, 8/ 

1 

Q, (z) 5: A q 1 f’ (f) dt 
o (I - 1)V (#- L) ( (2.2) 

Conditions (2.1) fix, roughly speaking, the choice of the power index in solution (2.2). 
To separate the single-valued branch of the function (z- 1)V , we make a cut along the ray 

(z<s<~,Y=o). The function takes positive values on the upper edge of the cut, and (I- 
z)V = e-*'pv (z - 1)V. 

Let us write the limiting valuesof the function Q, at the boundary y = 0, obtained 
using the Sokhotskii-Plemel' formulas /7, 8/ 

0 = A [if’ (5) f h (s)] (0 < I < I) (2.3) 

@ = Ae-“‘v h (2) (z > l), @ = Ah (5) (z < 0) 

where the integral over 0(x< 1 is regarded as the principal value. Taking into account 
(2.3) we obtain from (1.10) the final expressions for the function Y(z,) 

Y = O"(z, < O), Y = @ - l)_‘f’ (ZJ (0 < z1 < 1) (2.4) 

Y = (1 -@)-l sin (nv) h (zJ (zl > I) 

Using the formulas (1.5), (1.9), (2.2), (2.4) we can easily obtain expressions for the stresses 
and velocities on the whole half-plane in terms of Cauchy-type integrals. In problems of this 

type, however, the behaviour of the functions sought at the singularities and at the region 
boundary is of greatest interest. We shall therefore not compute the final formulas for 
(3 ID, . . .1 and just make the following comment on the qualitative aspects of the solution. The 

transverse wave fronts z,=O,1(OC andAD, see the figure) divide the whole half-plane into 
three subregions. The functions sought are defined in each of these subregions in a different 
manner, as a result of the fact that the transverse part of the field is described by differ- 
ent formulas according to (2.4). The behaviour of these functions on approaching the subregion 
boundaries, on the other hand, is determined by the behaviour of the functions f'(x) and /I is). 
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It is the study of these (and other) features that we shall now attempt. 

3. Behaviour of the solution near the singularities x=0,1, bo and trans- 
verse wave fronts 3% =O,L Let us carry out an asymptotic analysis of formulas (2.21, 
(2.4). It can be shown that the function @ in a small neighbourhood of the blade tip z-+0, 
and the function y in the neighbourhood of the front oc (~~-0) admit of the following 
asymptotic representations (H(z,) is the Heaviside function): 

@=--A+ +-iilrj+C+Opnfj (3.11 

Y = H (2,) (p- 1)” InS + 0 (4 (E = Jw’ ON 

The stresses and velocities written in a polar system of coordinates z = Iref@ are equivalent, 
as r-.+0 f to the following functions: 

u, _ --agA In r + UC, uy - p&l In r - fK (3.2) 
r=,, - f&4 (e - x), u w -_EA In r + c 

and far the remaining functions, when 0 <,<e doe,, the above expressions axe supplemented by 
constant terms describing the jumps at the front of the transverse wave 

A% = -Abe, = AU = ng,E (1 - fJ1-l 

From (3.2) it follows that the functions cf,* % and U have a logarithmic singularity at 
zero fE+O) or they are of the order of unity (E = 0) ) and zW ,V =0(i) if g+o or 
they are of the order of accuracy of (3.2) equal to 0 (r In r) if g = 0. The stress a, is 
campressive in a small neighbourhaad of zero, and the sign of uz depends on the sign of fi: 
the stress is tensile when B > 0 (ca < c <lJW and compressive when B-=0 f&&c, ccc,) 
The degenerate case @ = 0 will be considered separately. 

In the neighbourhoodofthe point at infinity we have 

The power flux from the longitudinal component of the field at infinity is equal to zero, 
since Q(Z) decreases as z--t w more rapidly than ~+/9/.Since the power flux into other sing- 
ularities 2 = 0,l is also zero, the energy balanceis as follows: the power necessary to move 
the blade and equal to cF, where F is a resistance equal to the power radiated at infinity' 
by transverse waves in the corresponding volume at the elastic medium. The resistance is 
calculated from the formula 

F= 

and the expression for a,(~,#) can be reduced to the form 

uy (5, 0) = B (1 - z)vG (z) (0 < r Q 0 (3.3) 

rn deriving (3.31 we used the formulas (1.51, 11.91, (2.3), (2+4), the method of separating 
the singularfties given in /f, a/, and the following formulas from /lo/ fox evaluating the 
cauchy-type integrals with a power-type singularity of the density: 
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We note that at sub-Rayleigh velocities there is no radiation at infinity and the elastic 
energy is dissipated near the crack tip moving in front of the wedge /1/. In the super- 
Rayleigh subsonic mode the energy is radiated, but both transverse and longitudinal component 
of the field /2/ take part in the process. The form and normal component of velocity of the 
cavity boundary are found from the formulas obtained using (1.51, (2.31, (2.4) 

I/ (5) = v (GO) = 5 v (5110) dsl+ f (1) (3.5) 
2 

V (z, 0) = -sin (ny) h (2) (5 > 1) 

When z--t m the asymptotic behaviour of y(x) is as follows: 

I 

c = sin(ny) ’ f’@)dt 
y(x)-C32Y 3 ny - 

s o (1 - QY 

i.e. the cavity expands to infinity if y#O((B#O) just as in the subsonic, super-Rayleigh 
range of velocities /2/ (where y(s) -const+r'l* as z--t m). Finally, we give the asymptotic 
formulas describing the behaviour of the function Q, in a small neighbourhood of the separation 
point (z--t 1 + i0) and of the function 'Y nearthetransverse wave front AD (see the figure) 
emerging from the separation point 

Q, = Af' (I) [i - ctg (nv)l - n+AG (1) (1 - 2)~ + 0 (I - z) (3.61 
Y = (fi - l)_'f' (1) i-10 (1 - 21) (zl- 1 - 0) 

Formulas (3.6) obtained from (2.2), (2.4) with help of (3.4), show, in particular, that 
the discontinuity at the front AD is weak: the stresses and velocities and continuous on pass- 
ing across the line 21 = 1. 

The asymptotic representations of the stresses and velocities when z+ 1 f i.0 , depend 
on the character of the separation. By analogy with a liquid /4/ we shall distinguish between 
the cases of sharp and smooth separation. We define, in the assumptions (1.2), the sharp 
separation as a separation taking place at the trailing edge of the blade, when the following 
conditions hold: 

G(s)< 0 (0-C x< L), G(L) < 0 !3 .7) 

the first of which represents the condition that the flow is continuous (1.3), written taking 
(3.3) into account. The asymptotics of the functions, as z-,L + ~0 , are obtained from (1.5), 
(1.9) and (3.6), taking the second condition of (3.7) into account 

0,=.~1'(~)+0(~~--z~v~ v=-+~(g+o(/L-zly) (3.8) 

V=f'(L)fO(lr,-z IV), 0" NZXY =O(IL-2 IY) 

The sharp separation in the transonic mode of flow (as well as in the subsonic, super- 
Rayleigh velocities /2, 3/) is characterized by the fact that the functions themselves are 

continuous at the separation point, and the derivatives experience a discontinuityof the second 
kind. The cavity profile curvature and the acceleration are not bounded as Z-P 1 f 0, y = 0. 
Analysis of (3.5) shows that the free stream line at the edge bends into the cavity. We shall 
show for comparison that in the case of sub-Rayleigh velocities the stresses and velocities 
themselves will be unbounded /l/. 

4. Determination of unknown parameter C in the case of smooth separation. 
The first condition of (3.7) may be violated. In this case the separation occurs when 

O<l< L. 
Assertion I. With the assumptions made (Sect-l) the condition 

(4.1) 

is the necessary condition of separation at the intermediate point O<l< L. 

Proof. Let us satisfy locally the requirement (1.3) to the left of the point A, and con- 
dition (1.4) to the right of this point, using the asymptotic expansions of the functions 
CJ (& 0) and V(z,O) near the separation point. To satisfy (1.4) locally we must have 

5 [V(ZI. O)--'(ZI)~~ZI >O (r-1 +O) 14.2) 

1 
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Using (3.5) and (3.4) we can reduce the integrand in (4 -2) to the form 

V (2, 0) - f (2) = 3r-l sin (xy) (2 - ll% (z) (I < z < L) (4.3) 

When Z--l*O, the function G(t) can be written in the form (to do this it is sufficient to 
satisfy the third condition of (1.2)) 

G (z) = G (I) + 0 (1 - z / I) (4.4) 

From (4.3) and (4.4) we find that to ensure inequality (4.2) we must have 

G (0 > 0 (4.5) 

Similarly we can conclude that to satisfy (1.3) in the left neighbourhood z=l , taking (3.3) 
and (3.4) into account, we must have 

G (1) < 0 (4.61 

Relations (4.5) and (4.6) can hold simultaneously only in the case of equality. This proves 
the assertion. 

When condition (4.11, which we shall call the condition of 5moth separation, holds, then 
o, which is a term in the asymptotic form (3.8), is replaced by 0(/l-z I). This follows from 
[i-5), (1.9), (3.6). From (4.11, (4.31, (4.4) it follows that (the term of order O()Z - 2 I) 
in the expansions of the functions a,(.~, 0) and V(;t, 0) -f'(s) vanishes) 

V(z, 0) - f' (5) = 0 I(2 - E)'+v I (24. I + 0) 
and we can formulate an assertion equivalent to Assertion 1, namely 

Assertion 2. The cavity profile curvature is finite at the point of smooth separation, 
and equal to the curvature of the streamlined contour. Assertion 2 holds in problems of flows 
of ideal fluids past solids, is called the Brillouin-Villat condition and is used to obtain 
the smooth separation points. Thus we can formulate the assertion proved above in a differ- 
ent way: the Brillouin-Villat condition remains valid for the transonic flows of elastic media 
past thin solids. By the way, the range of flow velocities considered here enables us, by 
means of the limiting processe,-CJ(p-0) I to pass to the case of the flow of an ideal compres- 
sible fluid past thin contours. In this case the form of solution for the longitudinal part 
of the field (function Q f will remain unchanged and the transverse component of the field 
will vanish. The coefficients will take the values 7,$J-(Zn~J-~ p$ (p - 0), A =~-&-l,y = I/, (p is 
the density), and one of the well-known schemes of fluid flow with infinite cavity past a 
solid is obtained /4, 11/. 

When condition (4.1) is used in practice to find the parameter I, the smallest root of 
(4.1) must obviously be taken. Condition (1.3) will. then hold globally, and to substantiate 
the scheme used it merely remains to check that the condition of impermeability (1.4) holds 
(obviously, there may be other points of attachment a_nd separation). 

We will consider the degenerate case fl = 0: C= 1/2c,, y = 0, PI = 1 separately. The case 
differs from that of B# 0 in the fact that the longitudinal part of the field vanishes 
(@ (2) E 0) and the function y takes the form (zl = z-y) 

I (21) = --H @I) H (I - %)f' (21) (I 21 I(. =I 
Correspondingly, the stress and velocity fields are piecewise continuous and take non-zero 
values in the corridor O<z - y< 1. To find the constant 1 , we write the expression for 0" 

o, (21 Y) = --f' (2 - Y) 

which is also valid on the area of contact, and for V and v in the region zr> I 

Ir Em 0, u = v(Z) = const 

are also valid on the cavity surface. The above expressions and conditions (1.3), (1.4) to- 
gether imply that the parameter 1 can be chosen uniquely when p = 0. If f'(s)>8 (()(r<L), 
then E = L and the stresses and velocities undergo a jump at the front zll = L. Ot&amise, I 
is the smallest root of the equation f'(z)= 0; the stresses and velocities are continuous 
across the front ZI = l but their derivatives are not, unlike the case 6 +O. In both ver- 
sions the cavity is a half-strip and the solution holds in the second case provided that (the 
condition of impermeability) 

f (4 <f (4 0 < z < L) 
5. Example. Let us consider a class of contours for which 

f'(z) = ez* - bz + d (d > 0) (5.1) 

The integrals in (4.1) can be evaluated to completion to yield a quadratic equation in 1, 
the roots of which are 

(5.2) 
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The roots of (5.2) include real and positive roots, provided that the following constraints 
are imposed on the coefficients: 

(2 - v) b* >, 8 (1 - v) ad. b > 0 0 (b < 0 U a < 0) 

When a>O, b>O,d#O we have two positive roots (a convex-concave profile); when 0 < II 
we have a single positive root (the profile is strictly convex if we also have b>o, and 
concave-convex if b<O). In every case the smallest positive root is chosen as the position 
of the separation point. It can be shown that in this case the necessary condition of separa- 
tion in the form 

G' (1) > 0 (5.3) 

will hold, and will ensure local satisfaction of the condition that the flow is attached to 
the left of the separation point, and of the condition of impermeability to the right of the 
separation point. Actually, the second positive root does not satisfy condition (5.3). The 
final choice of the scheme of flow past the profile of the form (5.1) is'arrived at by compar- 
ing the roots of (5.2) with L. If there are no positive roots amongst (5.2), then the flow 
separates from the edge at z = L. If on the other hand [1 is the smallest positive root, then 
at L<Zl the flow pattern is as before, and smooth separation occurs when L= 1,. When l,<L, 
the separation is smooth and takes place at the point Z= I,. However, it must be checked that 
condition (1.4) holds: i.e. that the elastic medium will not collide with the blade behind 
the separation point when l,<z<L. 

6. On certain generalizations of the condition of smooth separation, and 
of the problem as a whole. Assertion 1 can be generalized as follows to the case of three- 
dimensional non-steady separation of the elastic medium from a solid based on the results of 
/12/. Let a segment l?,(t) of the separation line r(1) of an elastic medium from a smooth 
rigid body with surface S , with smooth curvature in the small neighbourhood r,(FE S), move 
with velocity c(y,, t) (yaE r,) relative to the elastic medium at rest, under the constraints 

c,< le ICC, I and let c(y,, t) have bounded derivatives in all arguments (t is time). Let us 
also assume that at the instant of time in question no incident short waves exist in the small 
elastic neighbourhoodof I',, (there is no diffraction of short waves on the segment r. of the 
singular line r ). Then the principal term of the asymptotic form a,,,, (Y, t) and V,, (ys t) - 

(the subscript n denotes the direction along the normal to S, y E S, your,,) will 
EY $$ortional to Q (Y0, t) IY - Yo IP as y+y,, where Q (~0, t) is the coefficient common to 
on, (Yo, t) and V,, (Y, t) - V,, (yr t) , depending on the problem as a whole /12/ (Q(yo, t)= G(I) 
for the problem discussed in Sect.l-4). In addition, using the results obtained in /12/ we 
can prove. 

Assertion 3. With the assumptions made above, the conditions of attachment and imperme- 
ability analogous to (1.3) and (1.4) will hold if and only if 

Q (~0, t) = 0 (6.1) 

Assertion 4. Condition (6.1) is equivalent to the condition that the curvature of the 
free stream line is bounded on rO. It appears possible to extend the above results tothecase 
whenfrictionofvarying physicalnature ispresent. Zviagin* has nearly succeeded in proving the 
validity of the Brillouin-Villat condition in the super-Rayleigh subsonic flow of an elastic 
medium past thin solids, and in fact used it in specific examples (to complete the proof it 
lacked only the condition of impermeability (1.4)). In /2/ I was determined in the same case 
by using the condition for a small plastic zone to form in front of the wedge. Introducing 
dry or viscous friction does not introduce any fundamental changes in the solution of the 
problem formulated in Sect-l. In the case of dry friction (we will discuss the cases separat- 
ely) the nature of the singularity at zero is altered: the singularity will be a power quantity, 
the power index will depend on the value of c, and will be positive for some values of c (weak 
singularity) and negative for others. Generally speaking, the range of velocities Cl < c < Cl 

can be divided into three subranges. In each of these subranges and on the boundaries separat- 
ing them the solution will have its set of singularities at the singular points, and this makes 
the presentation of the problem quite complicated. the analysis of the separation is analogous 
to the case discussed above, and the conclusions obtained are analogous to Assertions 1 and 2 
for the two extreme velocity ranges. In the middle velocity range the flow can become detached 
only at the trailing edge of the blade and the stresses and velocities will be unbounded at the 
separation point (power singularity). 

We note, however, that the influence of friction can be small (the coefficientof friction 

can be small, the tangential stresses are limited by the condition of yield, etc.) - In this 

case the tangential stresses at the contact surface can be taken into account to a first 
approximation using the solution obtained as the zeroth approximation. 

*Zviagin A.V. Subsonic motion of solids of finite size through a deformable medium and some 
dynamic contact problems. Dis. na soiskanie uch. st. kand. fir.-matem. nauk: Moscow, EKJ, 1979. 
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INTEGRAL ESTIMATE OF THE PRESSURE IN AN INCOMPRESSIBLE MEDIUM* 

IA. A. KAMENIARZH 

In the case of incompressible media the problems of equilibrium or of 
slow steady motion can, in many instances, be formulated without taking 
the pressure into account. The resulting "deviator" problem is usually 
easier to tackle, but it yields the stress deviator field T only. The 
question arises in this connection of the possibility of returning to 
the initial formulation, i.e. of supplementing t by a pressure field p, 
such that the condition of equilibrium with given volume and surface 
forces will hold for the stresses e=*i-pg(g is the metric tensor). 
Since the general assertionsdonot, as a rule , guarantee the smoothness 
of r , the problem needs special attention. In particular, an estimate 
of the pressure when the corresponding data on the stress deviator are 
available, is of interest. The estimate 

obtained in the paper generalizes the analogous result known for r= 2 I!, 21. 
This jusitifes the elimination of the pressure from a number of problems. 
Moreover, the estimate obtained can be applied directly to, for example, 
the pressure in perfectly plastic and viscoelastic bodies. Sect.1 gives 
an exact formulation of the problem and quotes examples of the cases for 
which it is of interest. The fundamental result is given in Sect.2 and 
proved in Sect.4 after establishing in Sect.3 the assertions used in the 
proof and concerning the fields with prescribed divergence, and re- 
establishment of the distribution over the derivatives. Finally, Sect.5 
gives assertions facilitating the confirmation, for any problem, of the 
conditions under which the fundamental result was obtained. 

1. Examples. Formulation of the problem. Before producing the exact formulation 
of the problem, we will consider several examples. 

*Prikl.Matem.Mekhan.,48,1,123-132,1984 


